
Coping with Complexity
Albert Einstein wrote:

A clever person solves a problem. A wise person avoids it.
Source: http://refspace.com/quotes/problem-solving

Introduction
Tiki started in 2002 and it has been the FLOSS Web Application with the most built-in features since
perhaps 2005 or 2006. Since the beginning, Tiki was designed/destined to have many features. Ref:
SourceForge.net Project of the Month, July 2003.

In earlier days, many web apps had just one "main" feature, for example, PhpWiki and phpBB. Especially
in the early years of Tiki, concerns were voiced by some (in the community and well-wishers) that having
all these features and such an ambitious goal was a huge risk. Essentially, the concern is: "yes, it can work
now at a small scale but, as more features are added, the complexity increases and it will eventually
implode and grind to a halt."

In June 2011, in the context of a discussion about the then-named Tiki Suite (later renamed WikiSuite),
someone pointed out these concerns. I hadn't heard them for years and I figured that the description of
the Tiki model along with Tiki's success over the years had laid those concerns to rest. However, when
one person expresses concerns, it very likely represents a larger number of people that think this way
silently. Thus, this page is to

explain how Tiki historically copes with complexity1.
speculate on what it would look like if/when we encounter difficulties, and2.
in general, offer ideas on how to avoid the difficulties in the future.3.

A Wikipedian was once quoted: "The problem with Wikipedia is that it only works in practice. In theory, it
can never work." Tiki has a lot of similarities and some people think it can never work, or it can't scale.

Note: For the purpose of this discussion, the terms "extensions," "modules," "add-ons," and "plugins" are
all synonymous, referring to code that is not part of the main (core) code base. The use of these is very
common in web applications.

Defining the concept
This is not just a code complexity issue. It is also a community management issue, and it affects
documentation and so on.

"At the heart of the argument is the distinction between accidental complexity and essential complexity.
Accidental complexity relates to problems that we create on our own and which can be fixed; for example,
the details of writing and optimizing assembly code or the delays caused by batch processing. Essential
complexity is caused by the problem to be solved, and nothing can remove it; if users want a program to
do 30 different things, then those 30 things are essential and the program must do those 30 different
things."
http://en.wikipedia.org/wiki/No_Silver_Bullet

"In technology strategy, the second half of the chessboard is a phrase, coined by Ray Kurzweil, in
reference to the point where an exponentially growing factor begins to have a significant economic impact
on an organization's overall business strategy."
http://en.wikipedia.org/wiki/Wheat_and_chessboard_problem#Second_half_of_the_chessboard

"The software Peter Principle is used in software engineering to describe a dying project which has little
by little become too complex to be understood even by its own developers. It is well known in the industry

http://refspace.com/quotes/problem-solving
https://tiki.org/FLOSS-Web-Application-with-the-most-built-in-features
http://sourceforge.net/potm/potm-2003-07.php
http://en.wikipedia.org/wiki/PhpWiki
http://en.wikipedia.org/wiki/PhpBB
http://wikisuite.org
https://tiki.org/UserPagemarclaporte
https://tiki.org/Model
https://tiki.org/article292-Tiki-Receives-Best-of-Open-Source-Software-Applications-Award
http://www.nytimes.com/2007/04/23/technology/23link.html
http://www.nytimes.com/2007/04/23/technology/23link.html
http://en.wikipedia.org/wiki/No_Silver_Bullet
http://en.wikipedia.org/wiki/Wheat_and_chessboard_problem#Second_half_of_the_chessboard

as a silent killer of projects, and by the time the symptoms arise it is often too late to do anything about it.
Good managers can avoid this disaster by establishing clear coding practices where unnecessarily
complicated code and design is avoided. The name is . . . derived from the Peter Principle — a theory
about incompetence in hierarchical organizations"
http://en.wikipedia.org/wiki/Software_Peter_principle

"Economies of scope are conceptually similar to economies of scale. Whereas economies of scale for a firm
primarily refers to reductions in the average cost (cost per unit) associated with increasing the scale of
production for a single product type, economies of scope refers to lowering the average cost for a firm in
producing two or more products."
http://en.wikipedia.org/wiki/Economies_of_scope

Related links:

http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Software_bloat
http://www.zdnet.com/blog/service-oriented/avoid-accidental-complexity-and-96-other-things-every-sof
tware-architect-should-know/2436

What are examples of this?
How did projects that experienced such problems cope? Did they drop some goals? Did they split the
project? What can we learn to avoid the issues?

Hurd
Source: Modular Design and the Development of Complex Artifacts: Lessons from Free/Open Source
Software (2003) by Alessandro Narduzzo & Alessandro Rossi

It's hard to compare a web app to a kernel, but if one can make the comparison, the unified approach of
Tiki is closer to the Torvalds approach.

"The Mach microkernel imposed problems on the HURD developers that have been difficult to surmount,
and despite the criticisms of Tanenbaum and others, the choice of a monolithic kernel for Linux made it
easier to fulfill the first imperative of all free software developers, which was a working free operating
system."
Source:
http://www.h-online.com/open/features/GNU-HURD-Altered-visions-and-lost-promise-1030942.html?page=
3

Elasticsearch

Banon comes from a distributed systems background and says you want to run the compute next to
the data. All the compute too; not search in one place, BI in another, machine learning in a third.
You should do it in a single system.

Source:
http://www.theregister.co.uk/2014/12/23/elasticsearch_big_data_search_tool_fancy_an_elk_hunt/?page=2

Google
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://m.cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-singl
e-repository/fulltext
https://www.youtube.com/watch?v=W71BTkUbdqE
http://danluu.com/monorepo/

http://en.wikipedia.org/wiki/Software_Peter_principle
http://en.wikipedia.org/wiki/Economies_of_scope
http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Software_bloat
http://www.zdnet.com/blog/service-oriented/avoid-accidental-complexity-and-96-other-things-every-software-architect-should-know/2436
http://www.zdnet.com/blog/service-oriented/avoid-accidental-complexity-and-96-other-things-every-software-architect-should-know/2436
https://core.ac.uk/download/pdf/6381927.pdf
https://core.ac.uk/download/pdf/6381927.pdf
http://www.h-online.com/open/features/GNU-HURD-Altered-visions-and-lost-promise-1030942.html?page=3
http://www.h-online.com/open/features/GNU-HURD-Altered-visions-and-lost-promise-1030942.html?page=3
http://www.theregister.co.uk/2014/12/23/elasticsearch_big_data_search_tool_fancy_an_elk_hunt/?page=2
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://m.cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
http://m.cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://www.youtube.com/watch?v=W71BTkUbdqE
http://danluu.com/monorepo/

What are other examples?
Why do things become complex?
Intertwingularity
EVERYTHING IS DEEPLY INTERTWINGLED. In an important sense there are no "subjects" at all; there is
only all knowledge, since the cross-connections among the myriad topics of this world simply cannot be
divided up neatly. Hierarchical and sequential structures, especially popular since Gutenberg, are usually
forced and artificial. Intertwingularity is not generally acknowledged—people keep pretending they can
make things hierarchical, categorizable and sequential when they can't. —Ted Nelson
http://en.wikipedia.org/wiki/Intertwingularity
http://shirky.com/writings/ontology_overrated.html
http://en.wikipedia.org/wiki/Ted_Nelson

While Ted Nelson coined "Intertwingularity" to express the "complexity of interrelations in human
knowledge", it's the same problem for software. There will always be overlap for features and use cases.
For example, a learning management system has some feature overlap (ex.: user system and calendar)
with a groupware so adding missing functionality (ex.: gradebook) to a groupware is less work than
maintaining two apps. So, as Tiki adds features with each version, it progressively becomes easier and
easier to cover various use cases (economies of scope).

Dependency hell
"Dependency hell is a colloquial term for the frustration of some software users who have installed
software packages which have dependencies on specific versions of other software packages."
http://en.wikipedia.org/wiki/Dependency_hell

End-users of Tiki are pretty much immune to this because all the code is in the core. All features are
released at the same time. However, the Tiki development community needs to deal with this as it
includes over 150 software libraries from Composer. The Tiki strategy is to try to keep trunk using the
latest versions of software libraries and to use the latest requirements to be able to innovate. For
example, in mid-2017, WordPress required PHP 5.2 while Tiki required PHP 5.6. See: Version Lifecycle.

Zawinski's Law
Zawinski's Law of Software Envelopment (also known as Zawinski's Law) relates the pressure of
popularity to the phenomenon of software bloat.

"Every program attempts to expand until it can read mail. Those programs which cannot so expand are
replaced by ones which can."

Coping with Zawinski's Law
When planes crash, do we blame gravity? We must cope with this!

37 signals in the book "Getting Real" : "Goodbye to bloat. Simple, focused software that does just
what you need and nothing you don't"
"Focusing is about saying no" - Steve Jobs (WWDC'97)

In a community FLOSS project, it'll be difficult to get consensus on what is "needed" and what is "bloat."

Paraphrasing Clay Shirky, the solvable problem is not feature overload, it's better filters.

Thus, your next option is to have an extension system like those of Drupal and Joomla! or an all-in-one
model like Tiki.

After a while, some features get so many options that it becomes spaghetti (in the UI, the code, or both).

http://en.wikipedia.org/wiki/Intertwingularity
http://shirky.com/writings/ontology_overrated.html
http://en.wikipedia.org/wiki/Ted_Nelson
https://doc.tiki.org/features
https://tiki.org/Use-Cases
http://en.wikipedia.org/wiki/Learning_management_system
http://en.wikipedia.org/wiki/Groupware
http://en.wikipedia.org/wiki/Dependency_hell
https://doc.tiki.org/Composer
https://tiki.org/Lifecycle
http://en.wikipedia.org/wiki/Jamie_Zawinski#Zawinski.27s_law_of_software_envelopment
http://www.youtube.com/watch?v=H8eP99neOVs
http://doc.tiki.org/Tiki8#Filtering_basic_and_advanced_preferences
https://tiki.org/Model
https://tiki.org/Model

It's important to refactor when this happens. The Tiki model permits major changes between versions
without abandoning part of the community. See: Adaptability.

Combinatorial explosion
"In mathematics, a combinatorial explosion describes the effect of functions that grow very rapidly as a
result of combinatorial considerations."
http://en.wikipedia.org/wiki/Combinatorial_explosion

As the feature list grows and everything is expected to interact with everything else, the number of things
that can go wrong increases quickly. When there are several extensions for similar purposes, this adds
even more complexity.

Decomposition of complex problems in nearly–independent sub–problems is a complex activity itself

In reaction to complexity and software that has way too many features, some will point to the philosophy:
Do one thing, and do it well.

"Literature both in management and in computer science has clearly pointed out the pros and cons of
modular design and we have already discussed the undervalued difficulties that designers face when they
invent modular architectures for complex systems. Along with Simon’s perspective, it has been shown that
the decomposition of complex problems in nearly–independent sub–problems (i.e. modules) is a complex
activity itself (Marengo et al., 2001). At the beginning, designers do not know precisely how to
conceptualize the modules of new artifacts; later, when a first conceptualization is reached, they still
vaguely know how good is the chosen architecture, compared to the other that have not been considered."
Source: Modular Design and the Development of Complex Artifacts: Lessons from Free/Open Source
Software (2003), by Alessandro Narduzzo and Alessandro Rossi

How much complexity can we cope with?
It's hard to tell. There is no mathematical formula! But globally, the larger, more diverse, more vibrant
and more collaborative the community, the more complexity we can cope with.

More features and more code bring more complexity.
More eyeballs help cope with complexity.
More features bring more users and, thus, more eyeballs.

Either current users of the software stay with it instead of using something else, or the long
feature list attracts people.
"Essential complexity is caused by the problem to be solved, and nothing can remove it; if users
want a program to do 30 different things, then those 30 things are essential and the program
must do those 30 different things." — http://en.wikipedia.org/wiki/No_Silver_Bullet

We also can't predict the adaptive capacity of collaborative communities. Wikipedia has succeeded in less
than 20 years in gathering much more knowledge than anything else. Few people predicted success at the
current levels.

‘The problem with Wikipedia is that it only works in practice. In theory, it can never work.’

Tiki "only" has had over 300 code contributors (see the list of all code contributors) and many other
projects have proven that FLOSS can scale up much much higher than Dunbar's number.

What symptoms should we look out for?
It's one of those things that it's hard to tell at which precise instant that complexity "took over" and
maybe, by the time you see it, it's hard to reverse course.

https://dev.tiki.org/Adaptability
http://en.wikipedia.org/wiki/Combinatorial_explosion
https://core.ac.uk/download/pdf/6381927.pdf
https://core.ac.uk/download/pdf/6381927.pdf
http://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
http://en.wikipedia.org/wiki/No_Silver_Bullet
http://www.nytimes.com/2007/04/23/technology/23link.html
https://www.openhub.net/p/tikiwiki/contributors
https://tiki.org/List+of+all+code+contributors
http://en.wikipedia.org/wiki/Dunbar's_number

Innovation slowing down
What if adding new features becomes so time-consuming because of all the things to take into account?

In recent years, thanks to improvements in Tiki, additional building blocks and things are becoming easier
for web apps, it's easier than ever before to innovate.

Commit stats evolution
If commits stats start going down (which is not the case for Tiki), is it because of complexity or because
features are more stable?

Code base growing faster than the community
If you look at the lines of code (LOCs) count (which is not a great measure I agree, but just to illustrate),
you will see that the number of LOCs of Tiki has progressive growth while the Drupal/Joomla!/WordPress
projects have, for the extensions/add-ons, an exponentially increasing code base to deal with. My
argument is that this is caused by feature duplication in the extensions (which brings complexity via the
exponential combinations)

Tiki LOCs count is growing slowly with all the features that are added. Also, we regularly proceed to
refactoring which simplifies and reduces the code base. Source Lines of Code

Putting things into perspective
A Tiki 12.2 install contains 14,803 files and it's the FLOSS Web Application with the most built-in features.

About half the code in Tiki is maintained by the Tiki community and the other half is re-using code from
external libraries like Smarty, Zend Framework, jQuery, etc. These are generally in /vendor_bundled:
7511 Files (over time, everything is being moved to Composer, so the external code is less and less in
SVN or SVN externals).

So the Tiki community maintains the remaining: 7,292 files.

So say we maintain about 7,000 files. Sounds like quite a bit, but let's put this into perspective:

Joomla! has 8,351 "extensions"
Drupal has 27,604 "modules"
WordPress has 32 912 "plugins"

Tiki covers the vast majority of features that these three systems offer via their thousands of extensions.
So just about any project you could do with Joomla!, WordPress or Drupal, you could also do with Tiki.

Yet, they have more extensions to maintain than we have files! (and since they can't possibly
maintain them all, it leads to dead-end extensions and disappointed end-users).

Also, compare Tiki vs Drupal code base, and you will see that we are coping brilliantly with complexity.

Releases become slower or more difficult
Not only is Tiki the web app with the most built-in features, no other major CMS / Web app has released
more major versions in the last 10 years:

2009-05: http://doc.tiki.org/Tiki3 LTS
2009-11: http://doc.tiki.org/Tiki4
2010-06: https://doc.tiki.org/Tiki5
2010-11: https://doc.tiki.org/Tiki6 LTS
2011-06: https://doc.tiki.org/Tiki7
2011-11: https://doc.tiki.org/Tiki8

https://tiki.org/Coping%20with%20Complexity#Things_are_becoming_easier_for_Web_apps
https://tiki.org/Coping%20with%20Complexity#Things_are_becoming_easier_for_Web_apps
https://dev.tiki.org/Source%20Lines%20of%20Code
https://tiki.org/FLOSS-Web-Application-with-the-most-built-in-features
https://dev.tiki.org/external%20libraries
https://doc.tiki.org/Composer
http://extensions.joomla.org/
https://www.drupal.org/project/project_module?f%5B0%5D=&f%5B1%5D=&f%5B2%5D=&f%5B3%5D=&f%5B4%5D=sm_field_project_type%3A%5B*+TO+*%5D&text=&solrsort=iss_project_release_usage+desc&op=Search
http://wordpress.org/plugins/
http://prezi.com/bemzj02mmypm/how-cms-architecture-affects-dev-communities/
http://doc.tiki.org/Tiki3
http://doc.tiki.org/Tiki4
https://doc.tiki.org/Tiki5
https://doc.tiki.org/Tiki6
https://doc.tiki.org/Tiki7
https://doc.tiki.org/Tiki8

2012-06: https://doc.tiki.org/Tiki9 LTS
2012-12: https://doc.tiki.org/Tiki10
2013-06: https://doc.tiki.org/Tiki11
2013-10: https://doc.tiki.org/Tiki12 LTS
2014-8: https://doc.tiki.org/Tiki13
2015-5: https://doc.tiki.org/Tiki14
2016-4: https://doc.tiki.org/Tiki15 LTS
2016-11: https://doc.tiki.org/Tiki16
2017-7: https://doc.tiki.org/Tiki17
2018-1: https://doc.tiki.org/Tiki18 LTS
2018-11: https://doc.tiki.org/Tiki19
2019-6: https://doc.tiki.org/Tiki20

It's so fast that part of our community prefers to use LTS versions!

To be fair, WordPress also had a similar number of major releases during the same approximate time
frame (https://wordpress.org/about/history/) but it has many fewer features. More recently than Tiki,
Typo3 and Joomla! have moved to a six-month release cycle. But in all these cases, with their extension-
based model, not all features are ready at the same time. And sometimes, extensions are never ported to
the next version. Thanks to the Tiki model, we have inherent synchronized releases.

There is no sign of slowing down, etc. and even if development did slow down (because of maturity of
features, fewer developers, or other factors), there would still be a new version every six months, albeit
with less innovation.

Releases have actually become easier because we have streamlined the process and, thanks to the release
schedule, the whole community is synchronized.

Developers increasingly want to work on other projects
If the code base becomes so unpleasant to work with . . . it's important to have clean-up/refactoring
projects.

The best answer to this is customer-financed projects with reasonable timelines. For example, the
customer needs some new features and it's more cost-efficient to clean/refactor before adding them, so we
must continue to be a great platform for projects and Consultants/web shops.

Arguments that we are still very far from being on the "second part of the chessboard"
Many times, the chess board analogy is used to describe a huge increase in usage / sales / value coming
from a network effect. In this case, the exponentially increasing complexity of a system is being
highlighted.

If we were on the exponentially hard part, we would see

enhancements requiring an increasing effort; instead, things are becoming easier and easier, as we
re-use code that is in place and take advantage of better components (economies of scope)
releases requiring an increasing effort; on the contrary, our packaging/release infrastructure is
getting better and better (with more automation).

Yes, but it could happen eventually
This is really hard to debate as it's something that may happen some time in the future and no one can
prove either either success or failure until it happens. Every year that goes by, one camp says: "I told you
so". The other camp says: "wait, it's coming eventually."

It's important to listen to concerns and to act accordingly. Perhaps the warnings have in fact become a

https://doc.tiki.org/Tiki9
https://doc.tiki.org/Tiki10
https://doc.tiki.org/Tiki11
https://doc.tiki.org/Tiki12
https://doc.tiki.org/Tiki13
https://doc.tiki.org/Tiki14
https://doc.tiki.org/Tiki15
https://doc.tiki.org/Tiki16
https://doc.tiki.org/Tiki17
https://doc.tiki.org/Tiki18
https://doc.tiki.org/Tiki19
https://doc.tiki.org/Tiki20
https://tiki.org/Lifecycle
https://tiki.org/Tiki-vs-WordPress
https://wordpress.org/about/history/
https://tiki.org/Tiki-vs-Typo3
https://tiki.org/Tiki-vs-Joomla!
https://tiki.org/Model#Inherent_synchronized_releases
http://info.tiki.org/Consultants

self-defeating prophecy?

What makes you make you think that the community won't adapt?

What does the Tiki model do well to cope with complexity?
PHP / MySQL / Zend Framework / Smarty / jQuery and, more recently, Bootstrap and Vue.js are our
base and we re-use a lot of code. So this reduces our workload. All of these are in evolution (notably
ZF2, Smarty3) so our base is as future-proof as it can be. We have offloaded a lot of work to these
components and avoided new work by reusing what they offer. In fact, more than half the code
shipped in Tiki comes from an external library that we don't have to maintain (although sometimes we
need to help — we upstream fixes when we have some). Please see: Source Lines of Code.
A diverse community, including commercial ecosystem
Easy to contribute to
Our Dogfood is really good now. Tiki, as a community, relies on Tiki to collaborate. For example: our
bug tracker was not very good at first and this was an added workload (not only to fix bugs, but also
to improve the bug tracker). But now, Tiki as an application is powerful and mature. Thus, our
community is more efficient (all other things being equal) than a community with a less
powerful/integrated tool or a tool that they can't tailor to their needs.
The Wiki Way is really good for dealing with complexity, as proven most notably by Wikipedia.
A lot of people never thought Wikipedia would become as big as it is. Wikipedia is an example of
spectacular volume and growth. It gets bigger and more complex but, with more people, they can
address more. And Wikipedia has huge server costs to cover. In Tiki's case, even doubling the number
of features/developers/users won't cause a significant financial risk. We'll need a few more dedicated
servers. Except for Google Summer of Code, all contributions to Tiki have been by the community (via
consulting companies, IT departments, etc.). The GSoC contributions certainly made some features
appear faster than they would have otherwise, but after the introduction, they are community-
maintained, without any external funding.
Maintainability

We undertake regular cleanups to, for example, push features to the browsers (ex.:
spellcheckers). See: Endangered features
We dropped the goal of database independence to focus on MySQL to keep things simpler and to
streamline.

Upgradeability
Adaptability

Tiki can make major changes between versions without abandoning part of the community.
Examples of refactoring include

Themes in Tiki3
jQuery in Tiki3
Permissions in Tiki4
UTF-8 handling in Tiki5
Trackers in Tiki7
Comments in Tiki8
Bootstrap in Tiki13
Vue.js in Tiki 21
Todo: (other more recent examples of refactoring will be added here)

Release early, release often
Paraphrasing Clay Shirky, the solvable problem is not feature overload, it's better filters.
profiles.tiki.org

All-in-one model reduces complexity
Some people think that all the code in core increases complexity. That's because they are just looking at
the core. A normal usage of a core + extension app necessarily means that you will use many extensions.
Thus, you need to take this real-world usage into account.

http://en.wikipedia.org/wiki/Self-defeating_prophecy
https://dev.tiki.org/external%20library
https://dev.tiki.org/Source%20Lines%20of%20Code
https://tiki.org/DogFood
https://dev.tiki.org/Maintainability
https://dev.tiki.org/Endangered%20features
https://doc.tiki.org/database%20independence
https://dev.tiki.org/Upgradeability
https://dev.tiki.org/Adaptability
http://en.wikipedia.org/wiki/Release_early,_release_often
http://doc.tiki.org/Tiki8#Admin_panels_-_filtering_basic_and_advanced_preferences
http://profiles.tiki.org

Now, an all-in-one code base leads to more core re-use, less duplication, more code review, and avoids
dependency hell. See more about the Tiki model.

Where are the risks and how to mitigate them?
Active Tiki community members know well where the issues are

Regular refactoring and cleanups needs to happen.
Too many branches. Ref: lifecycle

Fewer branches would be better
Translation branching strategy

Hard for new devs to join
We could have better docs and more organized mentoring
The influx of newcomers into an organization does not seem to increase defects in its software,
perhaps because newcomers get simple tasks at the start.

Quick release schedule which "loses" part of the community.
We have LTS versions. See lifecycle.

Community SWOT
SWOT

Things are becoming easier for web apps
Software in general is getting better and expectations are higher. But in general, it's quite clear that
things are easier every year for a FLOSS web application.

Better overall ecosystem (better browsers, faster JavaScript, HTML5, CSS3) is making things easier.
Git vs SVN vs CVS
PHP8 vs PHP7 vs PHP5 vs PHP4, jQuery vs hand-coding JavaScript, etc.

All these components are generally good with backward compatibility.
Hardware is faster and can cope with more (Moore's law).
Internet connections are more readily available, faster and more reliable.
When we started our spreadsheet in 2004, browsers were slow and it was tough to make it cross-
platform. This recent revamp with jQuery is a day and night contrast.
MapServer vs GoogleMaps/OpenStreetMaps is another example where things have become so much
easier.
Responsive web design with the Bootstrap framework is an advance from jQuery Mobile + modern
handsets, which were a walk in the park compared to supporting WAP phones.
We tried to add WebDAV support several years ago. It worked but it was so slow that it was barely
usable. Now, we are back with eZ Components's implementation of WebDAV
UTF-8 support is not what it was in 2002 when Tiki started!

So what now?
Remaining use cases
If we look at the use cases, Roadmap, and missing features, it's clear that it's proportionally a small
number compared to what already has been done. And it's mostly just more of what we are really good at.
For example, adding a time sheet to Tiki is not going to be the straw that broke the camel's back!

It should be repeated that Tiki (as is) is the FLOSS web application with by far the most built-in features.
It is also among the fastest if not the fastest release cycle of comparable apps (Drupal, Joomla!, Plone,
Typo3, TWiki, etc.). And more features attracts more people. With enough people and with collaboration,
we are solidly on top of complexity challenges for Tiki.

Wiki Suite
Will WikiSuite take us to a tipping point where things start to break down? This is a legitimate
risk/concern because WikiSuite is not "more of the same". It takes the Tiki community out of its comfort
zone and it involves

https://tiki.org/Model
http://en.wikipedia.org/wiki/Code_smell
https://dev.tiki.org/lifecycle
https://tiki.org/Translation-branching-strategy
http://www.neverworkintheory.org/?p=17
http://www.neverworkintheory.org/?p=17
https://dev.tiki.org/lifecycle
https://tiki.org/SWOT
https://tiki.org/article70-TikiSheet-spreadsheet-in-your-browser-in-testing
https://tiki.org/article320-Tiki-Sheets-Spreadsheets-the-Wiki-Way
http://jquerymobile.com/
http://mobile.tiki.org/tiki-mobile.php?skin=none
https://doc.tiki.org/WebDAV
https://tiki.org/Use-Cases
https://dev.tiki.org/Roadmap
https://dev.tiki.org/missing%20features
https://dev.tiki.org/time%20sheet
http://en.wikipedia.org/wiki/Straw_that_broke_the_camel's_back
http://wikisuite.org

different communities
different repositories
different technologies
different development philosophies
different release schedules
etc.

It also introduces dependency challenges that Tiki has mostly avoided until now.

This being said, every day, there are SysAdmins/IT architects that are building their own "Suite" and
coping with the complexity. They are mostly doing this per organization. They may add a bit of re-
contributed glueware here and there but it's essentially individual initiatives without community and
sustainability.

How can a community be less efficient than these uncoordinated initiatives?

What is proposed is to federate the efforts of this type of person and to get the projects themselves to
collaborate. Tiki and BigBlueButton already have this type of collaboration. Kaltura as well.

To reduce the risk:

1 Pick the right components

Bring community and experience to the project.
These deal with their own internal complexities.

We are not asking people to change their client OS, as all client apps are cross-platform.
http://wikisuite.org/Component-criteria
Use the same technology when possible.

ClearOS is the choice for WikiSuite because it's PHP/MySQL/jQuery like Tiki vs the otherwise
excellent option Zentyal that is in Perl.

2 Attract critical mass of eyeballs
The same way some of the Tiki community members are hitting limitations and need something like
ClearOS or Jitsi, some of the Jitsi community members need something like Tiki or ClearOS. So because of
the complementary nature of the components, each community has those needs. And those energies are
not currently canalized in an organized way.

ClearOS reports 118,000 registered systems: A good chunk will be interested in complementary features.

For Tiki, we don't have system registration, so we don't know how many installs, except that it's a lot.
Most are on shared hosting so the Suite is out of reach (unless a SaaS option is readily available).
However, even a small portion adds up to a lot of potential users

3 Be strict on supported versions

To reduce dependency hell, we'll be very strict on the version numbers that are supported. We'll likely
start by following the Tiki release schedule and use whatever component version number is available at
that time. We'll try to get the component communities to adopt synchronized releases. And down the road,
we'll make an LTS version.

4 Use loose coupling
http://en.wikipedia.org/wiki/Loose_coupling

5 Use/promote open standards

http://en.wikipedia.org/wiki/Dependency_hell
https://tiki.org/article325-Collaborative-web-conferencing-with-Tiki-and-BigBlueButton
https://tiki.org/article299-TikiFest-New-York-A-Great-Success
http://wikisuite.org/Component-criteria
http://www.clearfoundation.com/Software/distribution-timeline.html
http://en.wikipedia.org/wiki/Dependency_hell
http://thecoccinella.org/synchronized-releases
http://en.wikipedia.org/wiki/Loose_coupling

6 Incorporate glueware in the respective component projects (vs maintaining code at
wikisuite.org)

mlp wrote:

comment: what is the problem exactly?
This comment would pose that complexity in itself is not a problem. The Tiki development process
is basically an organic one - a self regulating self limiting process. Tiki grows the same way as a
tree does, branching and growing continuously. The compliment of organic growth for a tree, as in
Tiki, is that not all branches or features must live. Lots of branches (features, experiments) go in a
direction that doesn't encounter much sunlight (usage). These die and eventually are pruned off,
which is a healthy process for the tree overall.

It is certainly possible that Tiki will reach a stage where the growth is less upward and outward,
but more of a thickening (cross feature integration). The risks of complexity though, by and large
only come into play where complexity meets inflexibility. As a software project, Tiki only
guarantees to be itself, what it is at the moment; unlike proprietary projects, it is not bound to
serve or upgrade an existing client base; backward compatibility is viewed as important but not
essential; projects can stay put on LTS releases. The openness to contributions accepts a lot more
energy, and ultimately it is the volume of energy that determines the size of the project and the
tree. The bottom line is that Tiki is what its current community of users and developers want it to
be, and whatever level of complexity it has now is "just right" for that set of people.

Other ideas
It would be nice to have a historical chart. I suspect it would show that the number of new features is
slowing down and that our code base complexity is under control.

Lines of Code
Number of preference options
Number of active developers (like Openhub.net)

Related links
https://joind.in/talk/view/3484
http://www.shirky.com/weblog/2010/04/the-collapse-of-complex-business-models/
Modular Design and the Development of Complex Artifacts: Lessons from Free/Open Source Software
(2003), by Alessandro Narduzzo and Alessandro Rossi
http://css.csregistry.org/tiki-index.php?page=What%20are%20Complex%20Systems%20?
Complexity
A debate on complexity leads to a Drupal fork
http://thenextweb.com/entrepreneur/2014/09/06/complexity-enterprises-biggest-debt/
https://signalvnoise.com/the-majestic-monolith/

alias
Complexity

https://joind.in/talk/view/3484
http://www.shirky.com/weblog/2010/04/the-collapse-of-complex-business-models/
https://core.ac.uk/download/pdf/6381927.pdf
https://core.ac.uk/download/pdf/6381927.pdf
http://css.csregistry.org/tiki-index.php?page=What%20are%20Complex%20Systems%20?
https://dev.tiki.org/Complexity
http://www.lullabot.com/blog/podcasts/backdrop-drupal-fork
http://thenextweb.com/entrepreneur/2014/09/06/complexity-enterprises-biggest-debt/
https://signalvnoise.com/the-majestic-monolith/
https://tiki.org/tiki-editpage.php?page=Complexity

	Coping with Complexity
	Introduction
	Deﬁning the concept
	What are examples of this?

	Why do things become complex?
	Intertwingularity
	Dependency hell
	Zawinski's Law
	Combinatorial explosion
	Decomposition of complex problems in nearly–independent sub–problems is a complex activity itself

	How much complexity can we cope with?
	What symptoms should we look out for?
	Innovation slowing down
	Commit stats evolution
	Code base growing faster than the community
	Releases become slower or more diﬃcult
	Developers increasingly want to work on other projects

	Arguments that we are still very far from being on the "second part of the chessboard"
	Yes, but it could happen eventually
	What does the Tiki model do well to cope with complexity?
	All-in-one model reduces complexity

	Where are the risks and how to mitigate them?
	Things are becoming easier for web apps
	So what now?
	Remaining use cases
	Wiki Suite

	Other ideas
	Related links

